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Drifting pattern domains in a reaction-diffusion system with nonlocal coupling
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Drifting pattern domains~DPDs!, i.e., moving localized patches of traveling waves embedded in a stationary
~Turing! pattern background and vice versa, are observed in simulations of a reaction-diffusion model with
nonlocal coupling. Within this model, a region of bistability between Turing patterns and traveling waves arises
from a codimension-2 Turing-wave bifurcation~TWB!. DPDs are found within that region in a substantial
distance from the TWB. We investigated the dynamics of single interfaces between Turing and wave patterns.
It is found that DPDs exist due to a locking of the interface velocities, which is imposed by the absence of
space-time defects near these interfaces.
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INTRODUCTION

Pattern forming processes in nonequilibrium systems
be classified according to the primary instability of the sp
tially homogeneous state. Reference@1# distinguishes three
basic types of instability in unbounded systems:~i! spatially
periodic and stationary in time,~ii ! spatially periodic and
oscillatory in time, and~iii ! spatially homogeneous and o
cillatory in time. Within the reaction-diffusion literature
these instabilities are known as Turing, wave, and Hopf
furcations, respectively.

Many chemical and biological patterns are well captu
by so called activator-inhibitor models@2# describing the dy-
namics of two reacting and diffusing substances with t
coupled partial differential equations. In such tw
component reaction-diffusion models only Turing and Ho
instabilities are possible. Recently, numerical investigati
of chemical reaction-diffusion systems with three comp
nents@3# and nonlocal coupling@4# have yielded the occur
rence of wave instabilities and the corresponding pattern
universal description of patterns near these instabilities
achieved within the framework of amplitude equations@1,5#.

Here, we study a simple FitzHugh-Nagumo model w
inhibitory nonlocal coupling that is obtained as a limitin
case of a three-component reaction-diffusion system. It
scribes the interaction of an activator species with an inh
tor. For slow inhibitor diffusion~compared to the activato
diffusion!, the model exhibits a wave instability, while fo
fast inhibitor diffusion, a Turing instability is found. The tw
instabilities occur simultaneously at a codimension-2 Turi
wave bifurcation~TWB!. Such a situation has been foun
earlier within models for binary convection@6# and phase
separation in reactive mixtures@7# and is a generalization o
the well investigated Turing-Hopf instability in reaction
diffusion systems@8#. The basic properties of a TWB hav
been studied theoretically in amplitude equations@9# as well
as experimentally in a one-dimensional gas-discharge sys
@10#. In our model, we find a pattern previously unknown
reaction-diffusion systems: drifting pattern domains~DPDs!,
i.e., localized patches of traveling waves embedded in a T
ing background and vice versa~see Fig. 1!. These patches
have constant width and move~drift! with constant speed
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They exist in a broad region of the parameter space emb
ded in a region of bistability between traveling waves a
Turing patterns. Similar patterns have been reported in a
riety of hydrodynamical experimental systems~see, e.g.,
@11,12#! and have been related to secondary instabilities~par-
ity breaking! of stationary patterns@11,13#.

In this Rapid Communication we show that it is sufficie
to investigate the dynamics of single interfaces separa
domains of Turing and wave patterns in order to underst
the formation of DPDs. The dynamics of such interfaces
studied in the framework of amplitude equations and co
pared to results of numerical simulations in the origin
model. The dynamics of interfaces separating small am
tude patterns is well described by the amplitude equatio
For large amplitude patterns, an effect arises that we
velocity locking. This locking mechanism is responsible fo
the existence of DPDs with constant width.

FIG. 1. Space-time plots of the fieldu in gray scale for three
examples of DPDs found in numerical simulations of Eqs.~1!. In all
three casesa56.0, and only a part of the system of lengthL
5409.6 is shown.~a! Large DPD withd50.84. ~b!,~c! DPDs con-
sisting of a single cell of Turing and wave, respectively. In~b! d
50.80 and in~c! d50.91. For other parameters, see@17#.
©2002 The American Physical Society01-1
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MODEL EQUATIONS AND LINEAR STABILITY

We start from the three-variable system

] tu5au1bu22au32bv2gw1]x
2u,

] tv5cu2dv1d]x
2v,

tw] tw5eu2 f w1g]x
2w.

These equations are an extension of the FitzHugh-Nag
model by a second inhibitorw. If the second inhibitor is very
fast, tw50, one finds

] tu5au1bu22au32bv1]x
2u

2mE
2`

1`

e2sux2x8uu~x8,t !dx8,

] tv5cu2dv1d]x
2v. ~1!

The parameters characterizing the inhibitory nonlocal c
pling in Eqs. ~1! are then found ass5Af /g and m
5gAe2/g f from the original three-variable model abov
Related three-variable models have been introduced pr
ously to describe pattern formation on seashells and in
biology @14# as well as spot dynamics in gas discharges@15#
and concentration patterns in heterogeneous catalysis@16#.
Here, the emphasis is on the onset of pattern formation
sulting from destabilization of a single homogeneous ste
state.

Equations~1! possess the trivial homogeneous fixed po

u05
def

(u0 ,v0)T5(0,0)T for all parameter values. Here, w
consider the regime where this fixed point is the only o
present and consider perturbations proportional toeikx2l(k)t,
wherel(k)5x(k)1 iv(k). The growth ratesx(k) are given
by the eigenvalues of the Jacobian. Linear stability analy
reveals that Eqs.~1! exhibit wave instabilities if the nonloca
coupling is of sufficiently long range.

In the following we vary the control parametersa andd;
the ‘‘driving force’’ a represents the kinetics, whereas t
ratio of diffusion coefficientsd describes the spatial couplin
in the medium. All other parameters of Eqs.~1! have been
fixed @17#. For the wave bifurcation, the critical wave num
ber kW

c and parametersaW and dW are obtained from the
condition l(kW

c )56 iv0 where the perturbation withkW
c is

FIG. 2. ~a! Critical wave numberkW
c against inverse nonloca

coupling ranges. ~b! Real (x) and imaginary part (v) of l(k) at
the TWB. For parameters, see@17#.
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the fastest growing mode with (kW
c )25A2ms/(11d)2s2.

Note that for boths>sC ands50 ~global coupling limit!
the critical wave number iskW

c 50 @see Fig. 2~a!#. Similarly,
a competing Turing instability appears for a critical para
eter aT with a wave numberkT

c , where the leading eigen
value is l(kT

c)50. For large enough drivinga, the wave
instability appears for smalld, while for larged the Turing
instability destabilizes the homogeneous state. For the c
sen parameter values, the system exhibits a TWB point@see
Fig. 3~a! and @17##. For the correspondingl(k), see Fig.
2~b!.

WEAKLY NONLINEAR ANALYSIS

Near the TWB, we can writeu5
def

(u,v)T as a perturbative
expansion aroundu0 using a small parameter«, indicating
the distance to the instability threshold:u5u01«u11«2u2
1«3u31•••, and use the following multiple scale ansatz:

u15@A~X,T1,T2!UAei (v0t1kW
c x)1B~X,T1 ,T2!UBei (v0t2kW

c x)

1R~X,T1 ,T2!UReikT
cx1c.c.#/2.

FIG. 3. ~a! Parameter spacea-d near the TWB point~black
circle!. The light gray region indicates bistability between the Tu
ing and wave pattern withkT

c ,kW
c as predicted from Eqs.~2!. Dark

gray regions correspond to two examples of locking tongues fo
outward interface withkT5kT

c ~region OT! and an inward interface
with kW5kW

c ~region IT!. These two tongues are shown only up
a'5.6. The dashed lines show where the selected velocitie
interfaces in Eqs.~2! coincide with v lock . White circles indicate
parameter values of simulations shown in~b! and ~c!. See Fig. 4
below for a description of the dashed regions.~b! and ~c! show
space-time plots ofu in gray scale from simulations of Eqs.~1!
showing outward interfaces fora55.2. In~b! an example inside the
locking tongue is shown ford50.80 and in~c! an interface outside
the tongue exhibiting defects~inside the white circles! for d
50.86 is shown.
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This leads to a set of coupled equations for the amplitudeA,
B, and R for left- and right-going waves and the Turin
pattern that depend on slow time and space variables.
technical details of the derivation will be presented in a
ture publication@18#. The resulting equations read

] tR5hR2uRu2R1j]x
2R2z~ uAu21uBu2!R,

] tA1cg]xA5rA1~11 ic1!]x
2A2~12 ic3!uAu2A

2g~12 ic2!uBu2A2n~12 ik!uRu2A,

] tB2cg]xB5rB1~11 ic1!]x
2B2~12 ic3!uBu2B

2g~12 ic2!uAu2B2n~12 ik!uRu2B. ~2!

For the detailed values of all coefficients, see@19#. Note that
the nonlocal term of Eqs.~1! enters into the diffusion coef
ficients of Eqs.~2! but does not give rise to nonlocal terms
Eqs. ~2!. Knowledge of the coefficients of Eqs.~2! allows
analytical predictions of the pattern dynamics. Here, trav
ing waves are always preferred over standing waves (g.1,
see@1#! and bistability between wave and Turing patterns
found (nz.1). In this bistability region in parameter spac
@see Fig. 3~a!#, a family of stable Turing patterns and tw
families of stable left- and right-traveling waves para
etrized by their corresponding wave numbers coexist. To
further insight, we take a closer look at the dynamics
single interfaces separating domains of Turing and wave
terns.

SINGLE INTERFACE DYNAMICS

With suitable initial conditions, a moving interface b
tween Turing and wave patterns will be formed in simu
tions of Eqs.~1!. Near the interface that joins both patter
together, the maxima of the concentrations of activatoru and
inhibitor v are typically not conserved. As a consequen
space-timedefectsare produced by coalescence of maxim
and minima@see Fig 3~c!#.

There are two types of interface depending on whether
phase velocity of the waves points toward the interface
away from it. This classification is independent of the dire
tion in which the interface is moving. In the following, w
will call the first typeinward interfacesand the secondout-
ward interfaces. Figures 3~b! and 3~c! show examples of the
latter type.

Near the TWB, we have studied general properties
such interfaces in the amplitude equations~2! within a set of
ordinary differential equations obtained from a coher
structure ansatz in the comoving frame@5#. Since the inter-
face typically moves, we can distinguish an invading and
invaded domain. The wave numbers of Turing or wave p
terns are not unique, since there exist sidebands of w
lengths around the respective critical wave numbers. Ne
theless, an interface will typically select a particular wa
number for the invading domain, while the initial wave num
ber of the invaded state is a free parameter@18#. The velocity
of the interface is a function of this parameter. For invad
Turing patterns the selected wave number is always the c
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cal one, i.e.,kT
sel5kT

c , while for invading waves typically
kW

selÞkW
c and thereforevselÞv0. This is valid for both in-

ward and outward interfaces. Thus, we typically have t
one-parameter families of interfaces for a given point in p
rameter space. Near the TWB, these results coincide qu
tatively with numerical simulations of the nonlocal mod
~1!.

Far away from the TWB, simulations of interfaces in Eq
~1! show qualitatively similar behavior with respect to th
selected wave numbers. In addition, interfaces far away fr
the TWB may exhibit a locking mechanism, where the s
lected velocity is determined by the absence of defects at
interface. For geometrical reasons an interface without
fects, which connects a wave state with wave numberkW and
frequency v and a Turing state withkT , has a speed
uv locku5v/(kT2kW). This velocity locking mechanism is
found for both types of interface. The dark gray areas
and IT in Fig. 3~a! show the regions in parameter spa
where velocity locking occurs~locking tongues! in the origi-
nal reaction-diffusion equations~1! for outward and inward
interfaces, respectively.

In contrast, there are no locking tongues in the cor
sponding amplitude equations~2! because the rapidly vary
ing space and time scales have been factored out. Howe
on a line in the parameter space@see dashed line in Fig. 3~a!#,
the velocity of interfaces in Eqs.~2! coincides with the ve-
locity prescribed by the locking mechanism. An example o
locked outward interface in Eqs.~1! is displayed in Fig. 3~b!.
Outside the corresponding tongue the outward interfaces
play phase slips@see Fig. 3~c!#. The location of the locking
tongues depends only weakly on the interface free param
(kW for inward andkT for outward interfaces!. Note that the
locking tongues open at a substantial distance from
TWB. The locking mechanism arises when the characteri

FIG. 4. The region of existence of DPDs obtained in simulatio
of Eq. ~1! in the a-d parameter space is shown dashed. The li
gray area corresponds to the bistable region between the cr
wave and Turing patterns as calculated from the amplitude eq
tions ~3!. In regionB DPDs of any size exist; the size being dete
mined only by the initial condition. In regionC small domains of
wave patches traveling in a Turing background are found. In reg
A only Turing droplets are stable. The three circles correspond
the locations of simulations shown in Fig. 1.
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width of the interfaces is of the same order as the charac
istic length scale of the patterns.

DPDs AND THEIR PHASE DIAGRAM

The locking mechanism found for single interfaces allo
us to understand the existence of DPDs. Indeed, as ca
seen in Fig. 1, DPDs do not show defects. Large DPDs
composed of an inward and an outward interface@see Fig.
1~a!#, which are both subject to interface locking. This im
plies that the velocities of both interfaces have equal ma
tudeuv locku but opposite signs. Therefore, the DPDs maint
constantbut arbitrary width. Furthermore, the region of pa
rameter space where large DPDs exist starts to open w
the locking tongues for both interface types begin to over
@see Fig. 3~a!#. This is the case fora*5.7. Above that value,
DPDs spontaneously form from a variety of initial cond
tions. We have determined the parameter region where
propagate with constant width and drift speed, from ext
sive simulations in systems with sizesL.400 and periodic
boundary conditions. The results are shown in the phase
gram of Fig. 4.

We can distinguish three different subregions. In regionB,
DPDs of any size, with two locked interfaces traveling at t
same speed, are found@see Fig. 1~a!#. In regionA, the inward
interface is no longer locked and its speed is smaller t
uv locku. Therefore, large domains of Turing~wave! patterns
contract~expand! in size until only a stable DPD containin
.
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a single Turing cell is left@see Fig. 1~b!#. In regionC, the
outward interface selects akW

sel that would be unstable
against Turing patterns in an infinite domain. Therefore,
wave domain forming the DPD is mostly replaced by a T
ing pattern. However, small DPDs with a few wavelengths
wave pattern are still encountered. At the outer boundary
regionC, only DPDs with a single wave cell are found to b
stable@see Fig. 1~c!#.

CONCLUSION

We found drifting pattern domains in a reaction-diffusio
model with nonlocal coupling. Their ingredients include
bistability between wave and Turing patterns near
codimension-2 point as well as absence of defects at
interface. They exist as robust patterns only in a finite d
tance to the onset of pattern formation as a consequenc
velocity locking of the constituting interfaces. We expect th
such a locking mechanism is not limited to the reactio
diffusion model studied here and should carry over to ot
physical systems with competing patterns. Altogether, DP
and their constituting interfaces represent a generalizatio
simpler structures such as fronts and pulses in bista
reaction-diffusion systems, which do not simply combi
two homogeneous states, but, instead, select their cons
ents from whole families of possible traveling or stationa
periodic patterns.
-
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